Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oral Dis ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568959

RESUMO

BACKGROUND: Emerging evidence supports the association between periodontitis and depression, although the mechanisms are unclear. This study investigated the role of SorCS2 in the pathogenesis of periodontitis-induced depression. MATERIALS AND METHODS: An experimental periodontitis model was established using SorCS2 knockout mice and their wild-type littermates, and depression-like behaviour was evaluated. The expression of proBDNF signalling, neuronal activity, and glutamate-associated signalling pathways were further measured by western blotting and immunofluorescence. In addition, neuroinflammatory status, astrocytic and microglial markers, and the expression of corticosterone-related factors were measured by immunofluorescence, western blotting, and enzyme-linked immunosorbent assays. RESULTS: SorCS2 deficiency alleviated periodontitis-induced depression-like behaviour in mice. Further results suggested that SorCS2 deficiency downregulated the expression of pro-BDNF and glutamate signalling and restored neuronal activities in mice with periodontitis. Neuroinflammation in the mouse hippocampus was triggered by experimental periodontitis but was not affected by SorCS2 deficiency. The levels of corticosterone and the expression of glucocorticoid receptors were also not altered. CONCLUSION: Our study, for the first time, reveals the critical role of SorCS2 in the pathogenesis of periodontitis-induced depression. The underlying mechanism involves proBDNF and glutamate signalling in the hippocampus, providing a novel therapeutic target for periodontitis-associated depression.

2.
Proc Natl Acad Sci U S A ; 121(12): e2315707121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489388

RESUMO

KCTD10 belongs to the KCTD (potassiumchannel tetramerization domain) family, many members of which are associated with neuropsychiatric disorders. However, the biological function underlying the association with brain disorders remains to be explored. Here, we reveal that Kctd10 is highly expressed in neuronal progenitors and layer V neurons throughout brain development. Kctd10 deficiency triggers abnormal proliferation and differentiation of neuronal progenitors, reduced deep-layer (especially layer V) neurons, increased upper-layer neurons, and lowered brain size. Mechanistically, we screened and identified a unique KCTD10-interacting protein, KCTD13, associated with neurodevelopmental disorders. KCTD10 mediated the ubiquitination-dependent degradation of KCTD13 and KCTD10 ablation resulted in a considerable increase of KCTD13 expression in the developing cortex. KCTD13 overexpression in neuronal progenitors led to reduced proliferation and abnormal cell distribution, mirroring KCTD10 deficiency. Notably, mice with brain-specific Kctd10 knockout exhibited obvious motor deficits. This study uncovers the physiological function of KCTD10 and provides unique insights into the pathogenesis of neurodevelopmental disorders.


Assuntos
Encefalopatias , Transtornos do Neurodesenvolvimento , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Camundongos , Proteínas/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Transtornos do Neurodesenvolvimento/genética , Encefalopatias/genética , Neurogênese/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
3.
Int Immunopharmacol ; 119: 110192, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37068341

RESUMO

Glycolysis has been demonstrated as a crucial metabolic process in bacteria infected diseases via modulating the activity of pyroptosis. Macrophages are the most abundant immune cells that infiltrated in the infected periodontal tissues, which significantly influence the outcome of periodontitis (PD). However, the effect of glycolysis in regulating macrophage pyroptosis during PD development remains unknown. This study aimed to explore the role of glycolysis in PD-associated macrophage pyroptosis and periodontal degeneration. Clinical specimens were used to determine the emergence of macrophage pyroptosis and glycolysis in periodontal tissues by immunohistochemical analysis and western blot. For an in-depth understanding of the regulatory effect of glycolysis in the progression of macrophage pyroptosis associated periodontitis, both in vivo PD model and in vitro PD model were treated with 2-DG (2-Deoxy-d-glucose), a glycolysis inhibitor. The data showed that the blockade of glycolysis could significantly suppress the lipopolysaccharide (LPS) induced macrophage pyroptosis, resulting in an attenuation of the inflammatory response and bone resorption in periodontal lesions. Furthermore, we revealed that the regulatory effect of glycolysis on macrophage pyroptosis can be mediated via AMPK/SIRT1/NF-κB signaling pathway. Our study unveiled that suppressed glycolysis restrains the activity of PD-associated macrophage pyroptosis, osteoclastogenesis, and subsequent periodontal tissue destruction. These findings extend our knowledge of glycolysis in regulating PD-associated macrophage pyroptosis and provide a potential novel target for PD therapy.


Assuntos
NF-kappa B , Periodontite , Humanos , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Piroptose , Sirtuína 1/metabolismo , Macrófagos , Periodontite/metabolismo , Transdução de Sinais , Glicólise , Lipopolissacarídeos/farmacologia
4.
Int Immunopharmacol ; 116: 109767, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738676

RESUMO

OBJECTIVE: Increasing evidence supports the association between periodontitis and depression. However, the specific mechanisms remain to be further elucidated. The present study aimed to mechanistically investigate the regional roles of proBDNF (the precursor of brain-derived neurotrophic factor) in periodontitis induced depression-like behavior in mice. METHODS: Experimental periodontitis model was established by periodontal injection of Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) in 8-week-old male Bdnf-HA/HA mice for 3 weeks. The depression-like behaviors, spontaneous exploratory activity and the level of anxiety were assessed by behavior tests. The activation of microglia and astrocytes, as well as the expression of Interleukin (IL)-1ß and Tumor necrosis factor (TNF)-α in the hippocampus, prefrontal cortex, and cortex were further assessed by immunofluorescence and western blots. The levels of IL-1ß in blood serum and expression of occludin as well as claudin5 in the hippocampus, prefrontal cortex, and cortex were further determined by enzyme-linked immunosorbent assay and western blot. Finally, the expression of proBDNF, its receptors, and mature BDNF (mBDNF), as well as neuronal activity were measured by western blots and immunofluorescence. RESULTS: Pg-LPS successfully induced periodontitis in mice and caused obvious depression-like behavior. Furthermore, we observed an increased activation of astrocytes and microglia, as well as a significant increase in expression of IL-1ß and TNF-α in the hippocampus of mice treated with Pg-LPS, with elevated level of IL-1ß in serum and decreased expression of occludin and claudin5 in the hippocampus. Importantly, we found that the levels of proBDNF and its receptors, SorCS2 and p75NTR, were increased significantly; however, the level of mBDNF was decreased, therefor leading to greater ratio of proBDNF/mBDNF. In addition, we also detected decreased neuronal activity in the hippocampus of mice treated with Pg-LPS. CONCLUSIONS: Our results indicate that Pg-LPS-induced periodontitis could cause depression-like behaviors in mice, and the proBDNF signaling is involved in the process.


Assuntos
Depressão , Periodontite , Animais , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Hipocampo/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ocludina/metabolismo , Periodontite/metabolismo , Receptores de Superfície Celular/metabolismo
5.
J Clin Invest ; 132(19)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35917186

RESUMO

Autism spectrum disorder (ASD) represents a group of neurodevelopmental phenotypes with a strong genetic component. An excess of likely gene-disruptive (LGD) mutations in GIGYF1 was implicated in ASD. Here, we report that GIGYF1 is the second-most mutated gene among known ASD high-confidence risk genes. We investigated the inheritance of 46 GIGYF1 LGD variants, including the highly recurrent mutation c.333del:p.L111Rfs*234. Inherited GIGYF1 heterozygous LGD variants were 1.8 times more common than de novo mutations. Among individuals with ASD, cognitive impairments were less likely in those with GIGYF1 LGD variants relative to those with other high-confidence gene mutations. Using a Gigyf1 conditional KO mouse model, we showed that haploinsufficiency in the developing brain led to social impairments without significant cognitive impairments. In contrast, homozygous mice showed more severe social disability as well as cognitive impairments. Gigyf1 deficiency in mice led to a reduction in the number of upper-layer cortical neurons, accompanied by a decrease in proliferation and increase in differentiation of neural progenitor cells. We showed that GIGYF1 regulated the recycling of IGF-1R to the cell surface. KO of GIGYF1 led to a decreased level of IGF-1R on the cell surface, disrupting the IGF-1R/ERK signaling pathway. In summary, our findings show that GIGYF1 is a regulator of IGF-1R recycling. Haploinsufficiency of GIGYF1 was associated with autistic behavior, likely through interference with IGF-1R/ERK signaling pathway.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Camundongos , Neurônios/metabolismo , Fenótipo , Transdução de Sinais
6.
Sci Adv ; 8(33): eabo7112, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35977029

RESUMO

Stress granules (SGs) are cytoplasmic assemblies in response to a variety of stressors. We report a new neurodevelopmental disorder (NDD) with common features of language problems, intellectual disability, and behavioral issues caused by de novo likely gene-disruptive variants in UBAP2L, which encodes an essential regulator of SG assembly. Ubap2l haploinsufficiency in mouse led to social and cognitive impairments accompanied by disrupted neurogenesis and reduced SG formation during early brain development. On the basis of data from 40,853 individuals with NDDs, we report a nominally significant excess of de novo variants within 29 genes that are not implicated in NDDs, including 3 essential genes (G3BP1, G3BP2, and UBAP2L) in the core SG interaction network. We validated that NDD-related de novo variants in newly implicated and known NDD genes, such as CAPRIN1, disrupt the interaction of the core SG network and interfere with SG formation. Together, our findings suggest the common SG pathology in NDDs.


Assuntos
DNA Helicases , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Transtornos do Neurodesenvolvimento/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse
7.
Genet Med ; 24(8): 1761-1773, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35511136

RESUMO

PURPOSE: The study aimed to investigate the role of PABPC1 in developmental delay (DD). METHODS: Children were examined by geneticists and pediatricians. Variants were identified using exome sequencing and standard downstream bioinformatics pipelines. We performed in silico molecular modeling and coimmunoprecipitation to test if the variants affect the interaction between PABPC1 and PAIP2. We performed in utero electroporation of mouse embryo brains to enlighten the function of PABPC1. RESULTS: We describe 4 probands with an overlapping phenotype of DD, expressive speech delay, and autistic features and heterozygous de novo variants that cluster in the PABP domain of PABPC1. Further symptoms were seizures and behavioral disorders. Molecular modeling predicted that the variants are pathogenic and would lead to decreased binding affinity to messenger RNA metabolism-related proteins, such as PAIP2. Coimmunoprecipitation confirmed this because it showed a significant weakening of the interaction between mutant PABPC1 and PAIP2. Electroporation of mouse embryo brains showed that Pabpc1 knockdown decreases the proliferation of neural progenitor cells. Wild-type Pabpc1 could rescue this disturbance, whereas 3 of the 4 variants did not. CONCLUSION: Pathogenic variants in the PABP domain lead to DD, possibly because of interference with the translation initiation and subsequently an impaired neurogenesis in cortical development.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteína I de Ligação a Poli(A)/metabolismo , Animais , Criança , Deficiências do Desenvolvimento/genética , Heterozigoto , Humanos , Deficiência Intelectual/genética , Camundongos , Transtornos do Neurodesenvolvimento/genética , Proteína I de Ligação a Poli(A)/química , RNA Mensageiro , Proteínas de Ligação a RNA/genética , Sequenciamento do Exoma
8.
J Genet Genomics ; 49(9): 881-890, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35331928

RESUMO

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders that cause severe social, communication, and behavioral problems. Recent studies show that the variants of a histone methyltransferase gene KMT5B cause neurodevelopmental disorders (NDDs), including ASD, and the knockout of Kmt5b in mice is embryonic lethal. However, the detailed genotype-phenotype correlations and functional effects of KMT5B in neurodevelopment are unclear. By targeted sequencing of a large Chinese ASD cohort, analyzing published genome-wide sequencing data, and mining literature, we curated 39 KMT5B variants identified from NDD individuals. A genotype-phenotype correlation analysis for 10 individuals with KMT5B pathogenic variants reveals common symptoms, including ASD, intellectual disability, languages problem, and macrocephaly. In vitro knockdown of the expression of Kmt5b in cultured mouse primary cortical neurons leads to a decrease in neuronal dendritic complexity and an increase in dendritic spine density, which can be rescued by expression of human KMT5B but not that of pathogenic de novo missense mutants. In vivo knockdown of the Kmt5b expression in the mouse embryonic cerebral cortex by in utero electroporation results in decreased proliferation and accelerated migration of neural progenitor cells. Our findings reveal essential roles of histone methyltransferase KMT5B in neuronal development, prenatal neurogenesis, and neuronal migration.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Feminino , Histona Metiltransferases , Humanos , Deficiência Intelectual/genética , Camundongos , Transtornos do Neurodesenvolvimento/genética , Neurogênese/genética , Gravidez
9.
Am J Hum Genet ; 107(5): 963-976, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157009

RESUMO

NCKAP1/NAP1 regulates neuronal cytoskeletal dynamics and is essential for neuronal differentiation in the developing brain. Deleterious variants in NCKAP1 have been identified in individuals with autism spectrum disorder (ASD) and intellectual disability; however, its clinical significance remains unclear. To determine its significance, we assemble genotype and phenotype data for 21 affected individuals from 20 unrelated families with predicted deleterious variants in NCKAP1. This includes 16 individuals with de novo (n = 8), transmitted (n = 6), or inheritance unknown (n = 2) truncating variants, two individuals with structural variants, and three with potentially disruptive de novo missense variants. We report a de novo and ultra-rare deleterious variant burden of NCKAP1 in individuals with neurodevelopmental disorders which needs further replication. ASD or autistic features, language and motor delay, and variable expression of intellectual or learning disability are common clinical features. Among inherited cases, there is evidence of deleterious variants segregating with neuropsychiatric disorders. Based on available human brain transcriptomic data, we show that NCKAP1 is broadly and highly expressed in both prenatal and postnatal periods and demostrate enriched expression in excitatory neurons and radial glias but depleted expression in inhibitory neurons. Mouse in utero electroporation experiments reveal that Nckap1 loss of function promotes neuronal migration during early cortical development. Combined, these data support a role for disruptive NCKAP1 variants in neurodevelopmental delay/autism, possibly by interfering with neuronal migration early in cortical development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Deficiências da Aprendizagem/genética , Mutação , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adolescente , Animais , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Criança , Feminino , Expressão Gênica , Genótipo , Células HEK293 , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Deficiências da Aprendizagem/diagnóstico , Deficiências da Aprendizagem/patologia , Masculino , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Fenótipo , Gravidez , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma , Adulto Jovem
10.
Sci Adv ; 5(9): eaax2166, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31579823

RESUMO

RNA binding proteins are key players in posttranscriptional regulation and have been implicated in neurodevelopmental and neuropsychiatric disorders. Here, we report a significant burden of heterozygous, likely gene-disrupting variants in CSDE1 (encoding a highly constrained RNA binding protein) among patients with autism and related neurodevelopmental disabilities. Analysis of 17 patients identifies common phenotypes including autism, intellectual disability, language and motor delay, seizures, macrocephaly, and variable ocular abnormalities. HITS-CLIP revealed that Csde1-binding targets are enriched in autism-associated gene sets, especially FMRP targets, and in neuronal development and synaptic plasticity-related pathways. Csde1 knockdown in primary mouse cortical neurons leads to an overgrowth of the neurites and abnormal dendritic spine morphology/synapse formation and impaired synaptic transmission, whereas mutant and knockdown experiments in Drosophila result in defects in synapse growth and synaptic transmission. Our study defines a new autism-related syndrome and highlights the functional role of CSDE1 in synapse development and synaptic transmission.


Assuntos
Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Variação Genética , Neurogênese/genética , Proteínas de Ligação a RNA/genética , Transmissão Sináptica/genética , Adolescente , Animais , Transtorno Autístico/psicologia , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Estudos de Associação Genética , Loci Gênicos , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Linhagem , Fenótipo , Proteínas de Ligação a RNA/metabolismo , Sinapses/genética , Sinapses/metabolismo , Adulto Jovem
11.
J Genet Genomics ; 46(5): 247-257, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31196716

RESUMO

Excess de novo likely gene-disruptive and missense variants within dozens of genes have been identified in autism spectrum disorder (ASD) and other neurodevelopmental disorders. However, many rare inherited missense variants of these high-risk genes have not been thoroughly evaluated. In this study, we analyzed the rare missense variant burden of POGZ in a large cohort of ASD patients from the Autism Clinical and Genetic Resources in China (ACGC) and further dissected the functional effect of disease-associated missense variants on neuronal development. Our results showed a significant burden of rare missense variants in ASD patients compared to the control population (P = 4.6 × 10-5, OR = 3.96), and missense variants in ASD patients showed more severe predicted functional outcomes than those in controls. Furthermore, by leveraging published large-scale sequencing data of neurodevelopmental disorders (NDDs) and sporadic case reports, we identified 8 de novo missense variants of POGZ in NDD patients. Functional analysis revealed that two inherited, but not de novo, missense variants influenced the cellular localization of POGZ and failed to rescue the defects in neurite and dendritic spine development caused by Pogz knockdown in cultured mouse primary cortical neurons. Significantly, L1CAM, an autism candidate risk gene, is differentially expressed in POGZ deficient cell lines. Reduced expression of L1cam was able to partially rescue the neurite length defects caused by Pogz knockdown. Our study showed the important roles of rare inherited missense variants of POGZ in ASD risk and neuronal development and identified the potential downstream targets of POGZ, which are important for further molecular mechanism studies.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto , Neurônios/patologia , Transposases/genética , Espinhas Dendríticas/patologia , Regulação para Baixo/genética , Humanos , Neuritos/patologia
12.
Mol Autism ; 9: 64, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564305

RESUMO

Background: We previously performed targeted sequencing of autism risk genes in probands from the Autism Clinical and Genetic Resources in China (ACGC) (phase I). Here, we expand this analysis to a larger cohort of patients (ACGC phase II) to better understand the prevalence, inheritance, and genotype-phenotype correlations of likely gene-disrupting (LGD) mutations for autism candidate genes originally identified in cohorts of European descent. Methods: We sequenced 187 autism candidate genes in an additional 784 probands and 85 genes in 599 probands using single-molecule molecular inversion probes. We tested the inheritance of potentially pathogenic mutations, performed a meta-analysis of phase I and phase II data and combined our results with existing exome sequence data to investigate the phenotypes of carrier parents and patients with multiple hits in different autism risk genes. Results: We validated recurrent, LGD, de novo mutations (DNMs) in 13 genes. We identified a potential novel risk gene (ZNF292), one novel gene with recurrent LGD DNMs (RALGAPB), as well as genes associated with macrocephaly (GIGYF2 and WDFY3). We identified the transmission of private LGD mutations in genes predominantly associated with DNMs and showed that parental carriers tended to share milder autism-related phenotypes. Patients that carried DNMs in two or more candidate genes show more severe phenotypes. Conclusions: We identify new risk genes and transmission of deleterious mutations in genes primarily associated with DNMs. The fact that parental carriers show milder phenotypes and patients with multiple hits are more severe supports a multifactorial model of risk.


Assuntos
Transtorno do Espectro Autista/genética , Modelos Genéticos , Herança Multifatorial , Mutação , Adulto , Criança , Feminino , Humanos , Masculino , Linhagem , Locos de Características Quantitativas
13.
Am J Med Genet A ; 176(12): 2668-2676, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30537371

RESUMO

SHANK3 has been identified as the causative gene of 22q13.3 microdeletion syndrome phenotype. De novo mutations (DNMs) of SHANK3 were subsequently identified in patients with several neurodevelopmental disorders, including autism spectrum disorders (ASDs), schizophrenia (SCZ), a Rett syndrome-like phenotype, and intellectual disability (ID). Although broad developmental phenotypes of these patients have been described in single studies, few studies have reviewed the genotype and phenotype relationships using a relatively large cohort of patients with SHANK3 DNMs. In this study, we identified a de novo splice mutation (NM_033517.1: c.2265+1G>A) that functionally impairs mRNA splicing, produces multiple splice variants, and results in the reduction of the amounts of mRNA. To analyze the genotype and phenotype correlations for SHANK3 DNMs, we reviewed 37 previously published patients with 28 SHANK3 DNMs. Our results revealed that haploinsufficiency of SHANK3 causes a broad spectrum of neurodevelopmental phenotypes with impaired social interaction, repetitive behavior, speech impairment, ID, and regression as the most common observations. Seizures, hypotonia, global development delay, dysmorphic features, and several other features also occurred recurrently. Specific phenotypes are also observed in certain genotypes. Our study provides the frequency of the heterogeneous co-occurring conditions caused by SHANK3 DNMs, which will be beneficial for diagnosis and clinical management.


Assuntos
Genótipo , Mutação , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Alelos , Processamento Alternativo , Pré-Escolar , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...